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Abstract. We give a short proof that a closed orientable smooth manifold is formal if
and only if it is formal after removing a point, making no assumption on the fundamen-
tal group. In the case of vanishing first Betti number, this is a corollary of a theorem
of Stasheff. Furthermore, we prove that a connected sum of closed orientable smooth
manifolds is formal if and only if each summand is formal, extending a classical basic
result to non-simply connected manifolds. As a corollary we obtain that an orientable
three–manifold is formal if its fundamental group is 1–formal. We then show that every
finitely presented 1–formal group arises as the fundamental group of a formal closed
four–manifold, and that virtual 1–formality implies 1–formality.

1. Top cell reattachment, and formality of connected sums

In [St83], Stasheff showed that the rational homotopy type of a simply connected ratio-
nal Poincaré duality space, of formal dimension n, is determined by the rational homotopy
type of its (n− 1)–skeleton. In particular, see e.g. [LS04, Lemma 6.3], [FOT08, Theorem
3.12], a simply connected closed n–manifold is formal if it is formal after removing a
point. Here, we give a new proof of this latter statement, while relaxing the assumption
of simple connectivity to orientability; throughout, all manifolds will be assumed smooth
and connected:

Theorem 1. Let M be a closed orientable n–manifold, and let M∗ be the manifold ob-
tained by removing a point. If M∗ is formal, then so is M .

Proof. The manifold M∗ is homotopy equivalent to M with a small open n-disk removed.
The double of this manifold with boundary is M#M , which has a degree one map to M .
Taking the double of an orientable manifold with boundary preserves formality [MSZ22,
Proposition 7.2 and Corollary 5.7]1. Therefore M#M is formal. Furthermore, formality
is preserved under non-zero degree maps [MSZ23], so we conclude that M is formal. □

The converse, and more, is true [LS04, Lemma 6.5]. Namely, the following holds, which
we prove here for completeness, using the results of Mačinic:

Lemma 2. [LS04, Lemma 6.5] If a space X is formal, then each of its skeleta is formal.
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1In [MSZ22, Proposition 7.2], the statement includes the assumption that the considered manifold with

boundary is the thickening of a complex in Euclidean space of a given dimension, but the argument does
not require that, and only uses that we have a manifold with boundary, which then deformation retracts
onto its (n − 1)–skeleton. In our case, we have M∗ deformation retracting onto the (n − 1)–skeleton of
M .
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Proof. The inclusion of the k–skeleton X(k) ↪→ X induces an isomorphism on homology
in degrees ≤ k − 1 and a surjection in degree k. Since X is formal, it follows from
[M10, Corollary 2.4] that X(k) is (k − 1)–formal in the sense of loc. cit. Then, by [M10,
Proposition 3.4], X(k) is formal. □

Since a closed smooth n–manifold admits a cell decomposition with a single n–cell, the
manifold obtained by removing a point is homotopy equivalent to the (n− 1)–skeleton.

Corollary 3. A closed orientable manifold is formal if and only if it is formal after
removing a point.

The following is also useful to record for the non-simply connected case:

Corollary 4. The connected sum of two closed orientable manifolds is formal if and only
if each summand is formal.

Proof. Let M,N be closed orientable n–manifolds. If the connected sum M#N is formal,
then using [MSZ23] we see that M and N are formal, since there are degree one maps
from M#N to M and N given by collapsing one of the summands. Conversely, if M and
N are formal, then so are their (n − 1)–skeleta M (n−1) and N (n−1). Then their wedge
sum M (n−1) ∨N (n−1) is formal (see e.g. the model for the wedge sum given in [FOT08,
Example 2.47]), and since M (n−1) ∨N (n−1) ≃ (M#N)(n−1), we conclude by Theorem 1
that M#N is formal. □

2. Three–manifolds, four–manifolds, and 1–formality

Instead of formality, one can consider notions of partial formality of a space, tan-
tamount to formality of appropriate corresponding skeleta [M10]. As a special case of
particular interest, one says a space X is 1–formal if there is a zigzag of morphisms of
commutative differential graded algebras between the piecewise-linear forms (APL(X), d)
and the cohomology (H(X), 0), each of which induces an isomorphism on first cohomol-
ogy and an injection on second cohomology. The 1–formality of a space only depends on
its fundamental group, and so we can say a group G is 1–formal if some (equivalently,
every) space X with π1(X) ∼= G is 1–formal. For a survey of this notion we refer the
reader to [PS09].

Strictly stronger notions of partial formality for spaces, in particular of 1–formality,
are considered in [FM05], and a comparison with the notions above is discussed in [M10].
In the stronger sense of [FM05], a 1–formal closed orientable manifold of dimension ≤ 4
is formal [FM05, Theorem 3.1]. A group with abelianization of rank b1 ≤ 1 is 1–formal
(and there are non-1–formal groups with b1 ≥ 2), and it turns out that a closed orientable
manifold of dimension ≤ 4 with first Betti number b1 ≤ 1 is 1–formal in the stronger sense
of [FM05] and hence formal [FM05a, Proposition 4.1]. Therefore, the low values of b1
ensuring 1–formality of a group also ensure formality of the ambient closed orientable n–
manifold provided n ≤ 4. We will now see that, in the case of closed orientable manifolds
of dimension three, the two notions of 1–formality coincide regardless of b1:

Theorem 5. If the fundamental group of a closed orientable three–manifold M is 1-
formal, then M is formal.

Proof. Removing a point from M produces a manifold with the homotopy type of the
two–skeleton M (2) of M . Since the inclusion M (2) ↪→ M induces an isomorphism on
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fundamental groups, M (2) is 1–formal and hence formal by [M10, Proposition 3.4]. Then,
by Theorem 1, we conclude that M is formal. □

This result is immediate for non-closed three–manifolds, as their homotopy types are
those of their two–skeleta.

Remark 6. (1) One would expect the above from a consideration of Massey products
as well. Indeed, all Massey products landing in degree two on a 1–formal space
vanish, see e.g. [S23, Proposition 3.15]. For Massey products landing in degree
three, one can apply the argument given in [CFM08, comments after Lemma 7]
to show that on any rational Poincaré duality space, Massey products landing in
top degree vanish.

(2) We also point out the fact that the fundamental group of a closed orientable
three–manifold determines its homotopy type; see e.g. [AFW15, Theorem 2.3].
One could then likewise prove Theorem 5 by exhibiting a formal closed orientable
three–manifold with a prescribed 1–formal fundamental group.

(3) For closed orientable manifolds of dimension ≥ 5, it is not true that 1–formality
implies formality. Indeed, one can for example consider the five–dimensional
Heisenberg manifold, obtained by taking the total space of the principal circle
bundle over a four–torus whose Euler class is represented by the standard sym-
plectic form on the four–torus. This manifold is 1–formal but not formal, see
[M10, Remark 5.4]. One obtains such examples in higher dimensions by taking
the product of this manifold with a sphere of the appropriate dimension (in the
six–dimensional case, note that the product of a 1-formal group and the integers
is a 1-formal group). We point the reader also to [FM05a], [FM05b, Theorem 1.1],
where the authors construct non-formal closed orientable manifolds of dimensions
five and six, both of which have fundamental group Z and are hence 1–formal. It
is unclear whether one should expect 1–formal closed orientable four–manifolds to
be formal. Generally, 1–formality is equivalent to formality of the 2–skeleton, and
as discussed in [KT91, p. 362], having a formal half-dimensional skeleton does
not ensure formality of a closed orientable manifold.

Consider now the following question [FM05a, p.129]:

Question 7. Given a finitely presented group Γ and an integer n with

n ≥ max(3, 7− 2b1(Γ))
2,

are there always non-formal n-manifolds M with fundamental group Γ?

The assumption throughout loc. cit. is that the manifolds under consideration are
closed, orientable, and connected. For the case of n = 3, the answer is generally negative,
as not every finitely presented group is the fundamental group of a closed three–manifold
(e.g. Zk for k ̸= 0, 1, 3). But even within the class of Γ realized as the fundamental group
of a closed orientable three–manifold, not every such Γ is the fundamental group of a
closed orientable non-formal three–manifold. Indeed, this follows from our Theorem 5, or
simply Remark 6(2) applied to any finitely generated 1–formal Γ. For example, we can

2In loc. cit., 2b1(Γ) − 7 is written instead of 7 − 2b1(Γ), but 7 − 2b1(Γ) is in line with Theorem 1
therein. In either case we provide counterexamples. Note that for the 2b1(Γ) − 7 variant, n = 3, 4 and
Γ = {0},Z would provide negative answers as well.
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take Γ to be the free product of k ≥ 2 copies of Z. The connected sum of k copies of
S1 × S2 has this as its fundamental group. We have b1(Γ) ≥ 2, and so n = 3 satisfies
n ≥ max(3, 7− 2b1(Γ)), giving a negative answer to Question 7.

Though we are not able to determine whether a 1–formal closed orientable four–
manifold is necessarily formal, we can show that given any finitely presented group Γ,
there is a closed orientable formal four–manifold with Γ as its fundamental group. For
context, let us first note the following easier result:

Proposition 8. Let Γ be a finitely presented 1–formal group. Then there is a formal
closed connected orientable manifold M such that π1(M) ∼= Γ.

Proof. Take a finite two–dimensional cell complex K embedded in Rn for some n, whose
fundamental group is Γ. This is a formal space by [M10, Proposition 3.4]. Now take a
thickening of the two–complex in Rn in the sense of Wall [W66]; its existence is guaranteed
as long as n ≥ 5. This thickening is an orientable manifold N with boundary ∂N such that
the inclusion of the boundary ∂N ↪→ N is an isomorphism on fundamental groups. Since
N is homotopy equivalent to K, it is also formal. Therefore its double is a formal closed
connected orientable manifold, which is formal as used in Theorem 1. Since ∂N ↪→ N
induces an isomorphism on fundamental groups, by Seifert–van Kampen, the fundamental
group of the double is isomorphic to Γ. □

The manifolds obtained by the above procedure have dimension at least five. We can
improve on this as follows:

Proposition 9. Let Γ be a finitely presented 1–formal group. Then there is a formal
closed connected orientable four–manifold M such that π1(M) ∼= Γ.

Proof. Take a finite two–dimensional cell complex with fundamental group Γ. By a theo-
rem of Stallings [S65], see [DR93, Corollary], there is a homotopy equivalent polyhedron
that embeds in R4. From the proof of Stallings’ theorem given in [DR93] (see also [S65,
Corollary 4.2]), we may take the P to be a subpolyhedron of R4, which is furthermore
finite. Now, P might not be two–dimensional, but we can consider only the faces of
dimension ≤ 2 and thus obtain a two–dimensional polyhedron with fundamental group
Γ, which embeds in R4. Being two–dimensional, this smaller polyhedron is formal as Γ is
1-formal [M10, Proposition 3.4]. Let us thus work with this two–dimensional polyhedron
instead, which we will refer to simply as P .

Now, we take a PL regular neighborhood N of P in R4 [RS, Chapter 3], see also [Cu61,
Section 3]. The inclusion of the boundary ∂N ↪→ N induces a surjection on fundamental
groups. Indeed, since P has codimension two in N , by general position we may move
any loop in P off of P inside N . Furthermore, since N has the structure of a mapping
cylinder (see e.g. [M76, p.417]), we can move the loop to ∂N .

By Hirsch–Mazur smoothing theory, we may smooth (N, ∂N) to a smooth compact
four–manifold M with boundary [M11, Theorem 2]. Since M has the homotopy type of
N , which in turn has the homotopy type of P (being a regular neighborhood), it is formal.
As used in the proof of Theorem 1, the double of M is formal as well. Furthermore, since
the inclusion ∂M ↪→ M induces a surjection on fundamental groups, by Seifert–van
Kampen we see that the double of M has fundamental group Γ. □

We compare the above to the fact that every group which is the fundamental group of
some complex projective variety is also the fundamental group of a complex projective
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surface (obtained by iterated application of the Lefschetz hyperplane theorem). It is an
open problem whether the analogous statement holds for fundamental groups of compact
Kähler manifolds, namely whether a Kähler group is the fundamental group of some
compact Kähler surface.

We finish by recording the following property of 1–formality:

Proposition 10. A finitely presented group is 1-formal if it is virtually 1–formal.

By virtual 1–formality we mean the existence of a finite-index subgroup which is 1–
formal. Under the additional assumption that the 1–formal subgroup is normal, this
result is implicit in the work of Papadima [P82].

Proof. Let Γ be a finitely presented group, with a 1–formal finite index subgroup H, and
take a two–complex K with fundamental group Γ. Now, thicken K to an orientable man-
ifold N with boundary in some Rn, and consider the finite cover N ′ → N corresponding
to the subgroup H. This map sends ∂N ′ to ∂N , and hence extends to a finite cover of
the double of N ′ to the double of N . Since N ′ has the homotopy type of a two–complex,
it is formal since H is formal, so its double is formal, and hence the double of N is formal
by [MSZ23, Theorem A]. Since the double of N retracts onto N , we conclude that N
is formal [FOT08, Example 2.88]. Alternatively, we could have taken N and N ′ to be
open orientable manifolds; then the covering map is a proper map of non-zero degree in
Borel–Moore homology, whence formality of N follows also by [MSZ23, Theorem A]. □

A 1–formal group can contain finite index subgroups that are not 1–formal. For ex-
ample, we can take a non-Haken closed orientable three–manifold modelled on Nil as in
[BK24]. Being non-Haken, such a manifold is a rational homology three–sphere and hence
formal, while being modelled on Nil provides us with a finite covering from a Heisenberg
nilmanifold, which is non-formal. We now apply Theorem 5.
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